Martin W. Liebeck, Imperial College, London, United Kingdom. Gary M. Seitz, University of Oregon, Eugene, Oregon. Donna M. Testerman, Ecole Polytechnique Federale de Lausanne, Switzerland.

Request Academic Copy
Please copy the ISBN for submitting review copy form
Description
1. Introduction 2. Notation 3. Level set-up 4. Results from the Literature 5. Composition Factors In Levels 6. Multiplicity-free families 7. Initial Lemmas 8. The case $X = A_2$ 9. The case $\delta = r\omega _k$ with $r,k\ge 2$ 10. The case $\delta = r\omega _1$, $r\ge 2$ 11. The case $\delta = \omega _i$ with $i\ge 3$ 12. The case $\delta = \omega _2$ 13. The case $\delta = \omega _1+\omega _{l+1}$ 14. Proof of Theorem , Part I: $V_{C^i}(\mu ^i)$ is usually trivial 15. Proof of Theorem , Part II: $\mu ^0$ is not inner 16. Proof of Theorem , Part III: $\langle \lambda , \gamma \rangle = 0$ 17. Proof of Theorem , Part IV: Completion