Nicholas Michael Katz, Princeton University, New Jersey, Antonio Rojas-Leon, Universidad de Sevilla, Spain, and Pham Huu Tiep, Rutgers University, Piscataway, New Jersey

Request Academic Copy
Please copy the ISBN for submitting review copy form
Description
Chapters 1. Introduction 2. Almost quasisimple groups containing elements with simple spectra 3. Preliminary results on condition $\mathrm {({\bf S })}$ 4. $G_\mathrm {geom}$ and $G_\mathrm {arith}$ 5. Structure of $G_\mathrm {geom}$ 6. Rationality, moments, and reduction mod $\ell $ of hypergeometric sheaves 7. Descents of hypergeometric sheaves 8. The notational scheme for descents 9. Proving finiteness of $G_\mathrm {geom}$ 10. The alternating group $\mathsf {A}_6$ 11. The alternating group $\mathsf {A}_7$ 12. The Mathieu group $\mathrm {M}_{11}$ 13. The Mathieu group ${\mathrm M}_{22}$ 14. The Mathieu group $\mathrm {M}_{23}$ 15. The Mathieu group $\mathrm {M}_{24}$ 16. The MacLaughlin group $\mathrm {McL}$ 17. The Janko group $\mathrm {J}_2$ 18. The Janko group $\mathrm {J}_3$ 19. The Rudvalis group $\mathrm {Ru}$ 20. The special linear group $\mathrm {PSL}_3(4)$ 21. The special unitary group $\mathrm {PSU}_4(3)$ 22. The symplectic group $\mathrm {Sp}_6(2)$ 23. The orthogonal group $\Omega ^ _8(2)$ 24. The exceptional group $G_2(3)$ 25. The exceptional group $G_2(4)$ and its subgroup $\mathrm {SU}_3(4)$ 26. The ""exceptional"" group $\mathrm {SU}_3(3) \cdot 2 \cong G_2(2)$ 27. The Suzuki group ${}^2\! B_2(8)$ 28. The ""exceptional"" group $\mathrm {SL}_2(8) \cdot 3 \cong {}^2\! G_2(3)$ 29. The Conway group $\mathrm {Co}_1$ and the Suzuki group $\mathrm {Suz}$ 30. Complex reflection groups 31. Further local systems for $\mathrm {Sp}_6(2)$, $\mathrm {SU}_3(3)$, ${}^2\! G_2(3)$, and $2\mathsf {A}_7$ 32. Further multi-parameter local systems
