Geographical Data Science and Spatial Data Analysis

SAGE PUBLICATIONS LTDISBN: 9781526449351

An Introduction in R

Price:
Sale price$340.00
Stock:
Out of Stock - Available to backorder

By Lex Comber, Chris Brunsdon
Imprint:
SAGE PUBLICATIONS LTD
Release Date:
Format:
HARDBACK
Pages:
360

Request Academic Copy

Button Actions

Please copy the ISBN for submitting review copy form

Description

Alexis Comber, Lex, is Professor of Spatial Data Analytics at Leeds Institute for Data Analytics (LIDA) the University of Leeds. He worked previously at the University of Leicester where he held a chair in Geographical Information Science. His first degree was in Plant and Crop Science at the University of Nottingham and he completed a PhD in Computer Science at the Macaulay Institute, Aberdeen (now the James Hutton Institute) and the University of Aberdeen. This developed expert systems for land cover monitoring from satellite imagery and brought him into the world of spatial data, spatial analysis, and mapping. Lex's research interests span many different application areas including environment, land cover / land use, demographics, public health, agriculture, bio-energy and accessibility, all of which require multi-disciplinary approaches. His research draws from methods in geocomputation, mathematics, statistics and computer science and he has extended techniques in operations research / location-allocation (what to put where), graph theory (cluster detection in networks), heuristic searches (how to move intelligently through highly dimensional big data), remote sensing (novel approaches for classification), handling divergent data semantics (uncertainty handling, ontologies, text mining) and spatial statistics (quantifying spatial and temporal process heterogeneity). He has co-authored (with Chris Brunsdon) An Introduction to R for Spatial Analysis and Mapping, the first 'how to book' for spatial analyses and mapping in R, the open source statistical software, now in its second edition. Outside of academic work and in no particular order, Lex enjoys his vegetable garden, walking the dog and playing pinball (he is the proud owner of a 1981 Bally Eight Ball Deluxe). Chris Brunsdon is Professor of Geocomputation and Director of the National Centre for Geocomputation at the National University of Ireland, Maynooth, having worked previously in the Universities of Newcastle, Glamorgan, Leicester and Liverpool, variously in departments focusing on both geography and computing. He has interests that span both of these disciplines, including spatial statistics, geographical information science, and exploratory spatial data analysis, and in particular the application of these ideas to crime pattern analysis, the modelling of house prices, medical and health geography and the analysis of land use data. He was one of the originators of the technique of geographically weighted regression (GWR). He has extensive experience of programming in R, going back to the late 1990s, and has developed a number of R packages which are currently available on CRAN, the Comprehensive R Archive Network. He is an advocate of free and open source software, and in particular the use of reproducible research methods, and has contributed to a large number of workshops on the use of R and of GWR in a number of countries, including the UK, Ireland, Japan, Canada, the USA, the Czech Republic and Australia. When not involved in academic work he enjoys running, collecting clocks and watches, and cooking - the last of these probably cancelling out the benefits of the first.

Chapter 1: Introduction to Geographical Data Science and Spatial Data Analytics Chapter 2: Data and Spatial Data in R Chapter 3: A Framework for Processing Data: The Piping Syntax and dplyr Chapter 4: Creating Databases and Queries in R Chapter 5: EDA and Finding Structure in Data Chapter 6: Modelling and Exploration of Data Chapter 7: Applications of Machine Learning to Spatial Data Chapter 8: Alternative Spatial Summaries and Visualisations Chapter 9: Epilogue on the Principles of Spatial Data Analytics

This book is a must-read for anyone wishing to use R to analyse large spatial datasets. It is suitable for teachers and learners at all levels, building knowledge from the ground-up using relevant, real-world examples and easy to follow instructions. -- Jonathan Huck Written by two renowned international experts, this is an excellent introductory book for students, teachers and researchers alike who have experience of using R and who want to further develop their skills in big data spatial science. -- Scott Orford

You may also like

Recently viewed